目的 研究高血壓非瓣膜心房顫動(dòng)患者甲狀腺激素受體(TR)的活性差異,以探討此類患者心房顫動(dòng)發(fā)生發(fā)展的可能機(jī)制。 方法 2008年1月-2010年1月序貫收集103例高血壓非瓣膜心房顫動(dòng)患者的相關(guān)資料(48例陣發(fā)性心房顫動(dòng)、55例持續(xù)性心房顫動(dòng)),并收集50例單純高血壓患者。收集各組患者的相關(guān)人口學(xué)數(shù)據(jù)及檢查結(jié)果,并采用放射性分析技術(shù)測定各組患者外周血淋巴細(xì)胞及淋巴細(xì)胞核TR的活性,主要包括平衡解離常數(shù)(Kd)及最大結(jié)合容量(MBC)。 結(jié)果 心房顫動(dòng)患者淋巴細(xì)胞TR的Kd較單純高血壓患者?。ㄔ叫”硎九c甲狀腺激素的親和力越高),且持續(xù)性心房顫動(dòng)患者的Kd較陣發(fā)性心房顫動(dòng)患者更?。?.77 ± 0.43、1.02 ± 0.41,P<0.001);心房顫動(dòng)患者淋巴細(xì)胞TR的MBC較單純高血壓患者小(越小表示受體總量越少),且持續(xù)性心房顫動(dòng)患者TR的MBC較陣發(fā)性心房顫動(dòng)患者更小(36.10 ± 12.40、65.22 ± 30.90,P<0.001)。淋巴細(xì)胞核TR的Kd及MBC也存在類似情況。簡單相關(guān)分析提示左房直徑與淋巴細(xì)胞TR的Kd及MBC呈負(fù)相關(guān),另外,調(diào)整相關(guān)指標(biāo)后偏相關(guān)分析也提示左房直徑與Kd及MBC呈負(fù)相關(guān)(Kd:r=?0.296,MBC:r=?0.448;P均<0.01);淋巴細(xì)胞核TR的Kd及MBC也存在類似情況。 結(jié)論 高血壓非瓣膜心房顫動(dòng)患者中,TR的總量減少,并且持續(xù)心房顫動(dòng)組低于陣發(fā)心房顫動(dòng)組;甲狀腺激素與受體的親和力在心房顫動(dòng)患者中升高,且持續(xù)心房顫動(dòng)組高于陣發(fā)心房顫動(dòng)組。另外,還發(fā)現(xiàn)TR的Kd和MBC與左房直徑均呈負(fù)相關(guān)。這些改變可能是高血壓非瓣膜心房顫動(dòng)患者心房顫動(dòng)發(fā)生及維持的一種重要機(jī)制。
引用本文: 王斯,何森,陳曉平,萬里艷,李龍心. 高血壓非瓣膜心房顫動(dòng)患者甲狀腺激素受體活性的變化. 華西醫(yī)學(xué), 2012, 27(4): 512-516. doi: 復(fù)制
版權(quán)信息: ?四川大學(xué)華西醫(yī)院華西期刊社《華西醫(yī)學(xué)》版權(quán)所有,未經(jīng)授權(quán)不得轉(zhuǎn)載、改編
1. | Wolf PA, Dawber TR, Thomas HE Jr, et al. Epidemiologic assessment of chronic atrial fibrillation and risk of stroke: the Framingham Study[J]. Neurology, 1978, 28(10): 973-977. |
2. | Krahn AD, Manfreda J, Tate RB, et al. The natural history of atrial fibrillation: incidence, risk factors, and prognosis in the Manitoba follow-up study[J]. Am J Med, 1995, 98(5): 476-484. |
3. | van Wagoner DR. Oxidative stress and inflammation in atrial fibrillation:role in pathogenesis and potential as a therapeutic target[J]. J Cardiovasc Pharmacol, 2008, 52(4): 306-313. |
4. | Kourliouros A, Savelieva I, Kiotsekoglou A, et al. Current concepts in the pathogenesis of atrial fibrillation[J]. Am Heart J, 2009, 157(2): 243-252. |
5. | Sawin CT, Geller A, Wolf PA, et al. Low serum thyrotropin concentrations as a risk factor for atrial fibrillation in older persons[J]. N Engl J Med, 1994, 331(19): 1249-1252. |
6. | Auer J, Scheibner P, Mische T, et al. Subclinical hyperthyroidism as a risk factor for atrial fibrillation[J]. Am Heart J, 2001, 142(5): 838-842. |
7. | Forfar JC, Miller HC, Toft AD. Occult thyrotoxicosis: a correctable cause of “idiopathic” atrial fibrillation[J]. Am J Cardiol, 1979, 44(1): 9-12. |
8. | Fuster V, Rydén LE, Cannom DS, et al. ACC/AHA/ESC 2006 guidelines for the management of patients with atrialfibrillation-executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients with Atrial Fibrillation)[J]. Eur Heart J, 2006, 27(16):1979-2030. |
9. | Krahn AD, Klein GJ, Kerr CR, et al. How useful is thyroid function testing in patients with recent-onset atrial fibrillation? The Canadian registry of atrial fibrillation investigators[J]. Arch Intern Med, 1996, 156(19): 2221-2224. |
10. | Watanabe H, Ma M, Washizuka T, et al. Thyroid hormone regulates mRNA expression and currents of ion channels in rat atrium[J]. Biochem Bioph Res Co, 2003, 308(3): 439-444. |
11. | Chen XP, Bing Z, He J, et al. Downregulation of peroxisome proliferator-activated receptor-γ expression in hypertensive atrial fibrillation[J]. Clin Cardiol, 2009, 32(6): 337-345. |
12. | Parkash R, Green MS, Kerr CR, et al. The association of left atrial size and occurrence of atrial fibrillation: a prospective cohort study from the canadian registry of atrial fibrillation[J]. Am Heart J, 2004, 148(4): 649-654. |
13. | Psaty BM, Manolio TA, Kuller LH, et al. Incidence of and risk factors for atrial fibrillation in older adults[J]. Circulation, 1997, 96(7): 2455-2461. |
14. | Zhang J, Lazar MA. The mechanism of action of thyroid hormones[J]. Ann Rev Physiol, 2000, 62(3): 439-466. |
15. | Yen PM. Physiological and molecular basis of thyroid hormone action[J]. Physiol Re, 2001, 81(3): 1097-1142. |
16. | Yen PM, Feng X, Flamant F, et al. Effects of ligand and thyroid hormone receptor isoforms on hepatic gene expression profiles of thyroid hormone receptor knockout mice[J]. EMBO Rep, 2003, 4 (6): 581-587. |
17. | Johnson PN, Freedberg AS, Marshall JM. Action of thyroid hormone on the transmembrane potentials from sinoatrial node cells and atrial muscle cells in isolated atria of rabbits[J]. Cardiology, 1973, 58(5): 273-289. |
18. | Watanabe H, Ma M, Washizuka T, et al. Thyroid hormone regulates mRNA expression and currents of ion channels in rat atrium[J]. Biochem Bioph Res Co, 2003, 308(3): 439-444. |
19. | Basset A, Blanc J, Messas E, et al. Renin-angiotensin system contribution to cardiac hypertrophy in experimental hyperthyroidism: an echocardiographic study[J]. J Cardiovasc Pharmacol, 2001, 37(2): 163-172. |
20. | Hu LW, Benvenuti LA, Liberti EA, et al. Thyroxine-induced cardiac hypertrophy: influence of adrenergic nervous system versus renin-angiotensin system on myocyte remodeling[J]. Am J Physiol Regul Integr Comp Physiol, 2003, 285(6): R1473-1480. |
21. | Iglesias P, Diez JJ. Influence of thyroid dysfunction on serum concentrations of adipocytokines[J]. Cytokine, 2007, 40(2): 61-70. |
- 1. Wolf PA, Dawber TR, Thomas HE Jr, et al. Epidemiologic assessment of chronic atrial fibrillation and risk of stroke: the Framingham Study[J]. Neurology, 1978, 28(10): 973-977.
- 2. Krahn AD, Manfreda J, Tate RB, et al. The natural history of atrial fibrillation: incidence, risk factors, and prognosis in the Manitoba follow-up study[J]. Am J Med, 1995, 98(5): 476-484.
- 3. van Wagoner DR. Oxidative stress and inflammation in atrial fibrillation:role in pathogenesis and potential as a therapeutic target[J]. J Cardiovasc Pharmacol, 2008, 52(4): 306-313.
- 4. Kourliouros A, Savelieva I, Kiotsekoglou A, et al. Current concepts in the pathogenesis of atrial fibrillation[J]. Am Heart J, 2009, 157(2): 243-252.
- 5. Sawin CT, Geller A, Wolf PA, et al. Low serum thyrotropin concentrations as a risk factor for atrial fibrillation in older persons[J]. N Engl J Med, 1994, 331(19): 1249-1252.
- 6. Auer J, Scheibner P, Mische T, et al. Subclinical hyperthyroidism as a risk factor for atrial fibrillation[J]. Am Heart J, 2001, 142(5): 838-842.
- 7. Forfar JC, Miller HC, Toft AD. Occult thyrotoxicosis: a correctable cause of “idiopathic” atrial fibrillation[J]. Am J Cardiol, 1979, 44(1): 9-12.
- 8. Fuster V, Rydén LE, Cannom DS, et al. ACC/AHA/ESC 2006 guidelines for the management of patients with atrialfibrillation-executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients with Atrial Fibrillation)[J]. Eur Heart J, 2006, 27(16):1979-2030.
- 9. Krahn AD, Klein GJ, Kerr CR, et al. How useful is thyroid function testing in patients with recent-onset atrial fibrillation? The Canadian registry of atrial fibrillation investigators[J]. Arch Intern Med, 1996, 156(19): 2221-2224.
- 10. Watanabe H, Ma M, Washizuka T, et al. Thyroid hormone regulates mRNA expression and currents of ion channels in rat atrium[J]. Biochem Bioph Res Co, 2003, 308(3): 439-444.
- 11. Chen XP, Bing Z, He J, et al. Downregulation of peroxisome proliferator-activated receptor-γ expression in hypertensive atrial fibrillation[J]. Clin Cardiol, 2009, 32(6): 337-345.
- 12. Parkash R, Green MS, Kerr CR, et al. The association of left atrial size and occurrence of atrial fibrillation: a prospective cohort study from the canadian registry of atrial fibrillation[J]. Am Heart J, 2004, 148(4): 649-654.
- 13. Psaty BM, Manolio TA, Kuller LH, et al. Incidence of and risk factors for atrial fibrillation in older adults[J]. Circulation, 1997, 96(7): 2455-2461.
- 14. Zhang J, Lazar MA. The mechanism of action of thyroid hormones[J]. Ann Rev Physiol, 2000, 62(3): 439-466.
- 15. Yen PM. Physiological and molecular basis of thyroid hormone action[J]. Physiol Re, 2001, 81(3): 1097-1142.
- 16. Yen PM, Feng X, Flamant F, et al. Effects of ligand and thyroid hormone receptor isoforms on hepatic gene expression profiles of thyroid hormone receptor knockout mice[J]. EMBO Rep, 2003, 4 (6): 581-587.
- 17. Johnson PN, Freedberg AS, Marshall JM. Action of thyroid hormone on the transmembrane potentials from sinoatrial node cells and atrial muscle cells in isolated atria of rabbits[J]. Cardiology, 1973, 58(5): 273-289.
- 18. Watanabe H, Ma M, Washizuka T, et al. Thyroid hormone regulates mRNA expression and currents of ion channels in rat atrium[J]. Biochem Bioph Res Co, 2003, 308(3): 439-444.
- 19. Basset A, Blanc J, Messas E, et al. Renin-angiotensin system contribution to cardiac hypertrophy in experimental hyperthyroidism: an echocardiographic study[J]. J Cardiovasc Pharmacol, 2001, 37(2): 163-172.
- 20. Hu LW, Benvenuti LA, Liberti EA, et al. Thyroxine-induced cardiac hypertrophy: influence of adrenergic nervous system versus renin-angiotensin system on myocyte remodeling[J]. Am J Physiol Regul Integr Comp Physiol, 2003, 285(6): R1473-1480.
- 21. Iglesias P, Diez JJ. Influence of thyroid dysfunction on serum concentrations of adipocytokines[J]. Cytokine, 2007, 40(2): 61-70.