• 1.哈爾濱醫(yī)科大學(xué)附屬第二醫(yī)院心血管外科心肌缺血機(jī)理與診療技術(shù)省部共建教育部重點(diǎn)實(shí)驗(yàn)室, 哈爾濱 150086;;
  • 2.哈爾濱醫(yī)科大學(xué)附屬第二醫(yī)院兒內(nèi)科,哈爾濱 150086;;
  • 3.雞西市人民醫(yī)院胸心血管外科, 黑龍江雞西 158100;

目的  探討建立大鼠室壁瘤左心室重建( LVR)動(dòng)物模型的可行性。方法  對35只成年雄性 Sprague-Dawley(SD)大鼠實(shí)施左冠狀動(dòng)脈前降支結(jié)扎以制作心肌梗死后室壁瘤( LVA)模型, 4周后,對符合入選標(biāo)準(zhǔn)的 16只 LVA模型實(shí)施 LVR手術(shù),作為實(shí)驗(yàn)組;另 10只模型行開胸手術(shù)作為對照組,在術(shù)后 3 d、2周、4周分別以超聲心動(dòng)圖評價(jià)兩組大鼠心功能情況,以直視攝片、 Masson’s Trichrome 染色評價(jià)室壁瘤切除的徹底程度。結(jié)果  LVA模型及 LVR模型的死亡率分別為 11.4%(4/35) 及 18.8%(3/16),建模成功率分別為 74.3%(26/35)和 81.3%(13/16)。直視攝片及 Masson’s Trichrome 染色提示補(bǔ)片完全替代心肌梗死瘢痕。超聲心動(dòng)圖提示:行 LVR手術(shù)的實(shí)驗(yàn)組動(dòng)物的左心室收縮期末內(nèi)徑( LVESD)及左心室短軸縮短率( FS)在術(shù)后 3 d即較對照組有所改善[術(shù)后 3 d:LVESD (5.00±0.87)mm vs.(5.90±0.92)mm, P<0.05;FS(34.20%±6.80%)vs.(26.60%±6.12%), P<0.01],隨著時(shí)間的推移,施行 LVR手術(shù)的實(shí)驗(yàn)組大鼠比對照組更好地維持了左心形態(tài)及收縮功能[術(shù)后 2周:左心室舒張期末內(nèi)徑(LVEDD)(7.60±0.56)mm vs.(8.50±1.08)mm,P<0.01;LVESD(5.10±0.65) mm vs.(6.69±0.89)mm,P< 0.001;FS(31.90%±6.90%)vs.(21.10%±6.17%),P<0.001;術(shù)后 4周:LVEDD(7.70±0.50)mm vs.(9.10± 0.89) mm,P< 0.001;LVESD(5.20±0.39)mm vs.(7.20±0.95)mm,P< 0.001;FS(31.80%±2.40%)vs.(20.20%±4.17%),P<0.001]。結(jié)論  大鼠 LVR模型可作為組織工程心肌補(bǔ)片( EHT)研究中一種穩(wěn)定、可靠、經(jīng)濟(jì)的初選模型。

引用本文: 康凱,曲輝,湯繼權(quán)等. 大鼠室壁瘤左心室重建模型的建立. 中國胸心血管外科臨床雜志, 2012, 19(3): 293-297. doi: 復(fù)制

版權(quán)信息: ?四川大學(xué)華西醫(yī)院華西期刊社《中國胸心血管外科臨床雜志》版權(quán)所有,未經(jīng)授權(quán)不得轉(zhuǎn)載、改編

1.  Di Donato M, Sabatier M, Dor V, et a1. Effects of the Dor procedure on left ventricular dimension and shape and geometric correlates of mitral regurgitation one year after surgery. J Thorac Cardiovasc Surg, 2001, 121 (1):91-96.
2.  Horii T, Tambara K, Nishimura K, et a1. Residual fibrosis affects a long-term result of left ventricular volume reduction surgery for dilated cardiomyopathy in a rat experimental study. Eur J Cardiothorac Surg, 2004, 26 (6):1174-1179.
3.  Zhang C, Hou J, Zheng S, et a1. Vascularized atrial tissue patch cardiomyoplasty with omentopexy improves cardiac performance after myocardial infarction. Ann Thorac Surg, 2011, 92 (4):1435-1442.
4.  Yuan Ye K, Sullivan KE, Black LD. Encapsulation of cardiomyocytes in a fibrin hydrogel for cardiac tissue engineering. J Vis Exp, 2011, (55):3251.
5.  Wang B, Borazjani A, Tahai M, et a1. Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells. J Biomed Mater Res A, 2010, 94 (4):1100-1110.
6.  Chiu LY, Radisic M. Scaffolds with covalently immobilized VEGF and Angiopoietin-1 for vascularization of engineered tissues. Biomaterials, 2010, 31 (2):226-241.
7.  Cui J, Li J, Mathison M, et a1. A clinically relevant large-animal model for evaluation of tissue-engineered cardiac surgical patch materials. Cardiovasc Revasc Med, 2005, 6 (3):113-120.
8.  Ratcliffe MB, Wallace AW, Salahieh A, et a1. Ventricular volume, chamber stiffness, and function after anteroapical aneurysm plication in the sheep. J Thorac Cardiovasc Surg, 2000, 119 (1):115-124.
9.  Pozzobon M, Bollini S, Iop L, et a1. Human bone marrow-derived CD133 (+) cells delivered to a collagen patch on cryoinjured rat heart promote angiogenesis and arteriogenesis. Cell Transplant, 2010, 19 (10):1247-1260.
10.  Gaebel R, Ma N, Liu J, et a1. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials, 2011, 32 (35):9218-9230.
11.  Yoshikawa E, Marui A, Tsukashita M, et a1. Carvedilol may alleviate late cardiac remodelling following surgical ventricular restoration. Eur J Cardiothorac Surg, 2010, 37 (2):362-367.
12.  Hsu CP, Huang CY, Wang JS, et a1. Extracellular matrix remodeling attenuated after experimental postinfarct left ventricular aneurysm repair. Ann Thorac Surg, 2008, 86 (4):1243-1249.
13.  Matsubayashi K, Fedak PW, Mickle DA, et a1. Improved left ventricular aneurysm repair with bioengineered vascular smooth muscle grafts. Circulation, 2003, 108 (Suppl 1):II219-II225.
14.  Di Donato M, Castelvecchio S, Menicanti L. Surgical treatment of ischemic heart failure:the Dor procedure. Circ J, 2009, 73 (Suppl A):A1-A5.
15.  Sakamoto Y, Mizuno A, Buckberg GD, et a1. Restoring the remodeled enlarged left ventricle:experimental benefits of in vivo porcine cardioreduction in the beating open heart. J Card Surg, 1998, 13 (6):429-439.
  1. 1.  Di Donato M, Sabatier M, Dor V, et a1. Effects of the Dor procedure on left ventricular dimension and shape and geometric correlates of mitral regurgitation one year after surgery. J Thorac Cardiovasc Surg, 2001, 121 (1):91-96.
  2. 2.  Horii T, Tambara K, Nishimura K, et a1. Residual fibrosis affects a long-term result of left ventricular volume reduction surgery for dilated cardiomyopathy in a rat experimental study. Eur J Cardiothorac Surg, 2004, 26 (6):1174-1179.
  3. 3.  Zhang C, Hou J, Zheng S, et a1. Vascularized atrial tissue patch cardiomyoplasty with omentopexy improves cardiac performance after myocardial infarction. Ann Thorac Surg, 2011, 92 (4):1435-1442.
  4. 4.  Yuan Ye K, Sullivan KE, Black LD. Encapsulation of cardiomyocytes in a fibrin hydrogel for cardiac tissue engineering. J Vis Exp, 2011, (55):3251.
  5. 5.  Wang B, Borazjani A, Tahai M, et a1. Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells. J Biomed Mater Res A, 2010, 94 (4):1100-1110.
  6. 6.  Chiu LY, Radisic M. Scaffolds with covalently immobilized VEGF and Angiopoietin-1 for vascularization of engineered tissues. Biomaterials, 2010, 31 (2):226-241.
  7. 7.  Cui J, Li J, Mathison M, et a1. A clinically relevant large-animal model for evaluation of tissue-engineered cardiac surgical patch materials. Cardiovasc Revasc Med, 2005, 6 (3):113-120.
  8. 8.  Ratcliffe MB, Wallace AW, Salahieh A, et a1. Ventricular volume, chamber stiffness, and function after anteroapical aneurysm plication in the sheep. J Thorac Cardiovasc Surg, 2000, 119 (1):115-124.
  9. 9.  Pozzobon M, Bollini S, Iop L, et a1. Human bone marrow-derived CD133 (+) cells delivered to a collagen patch on cryoinjured rat heart promote angiogenesis and arteriogenesis. Cell Transplant, 2010, 19 (10):1247-1260.
  10. 10.  Gaebel R, Ma N, Liu J, et a1. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials, 2011, 32 (35):9218-9230.
  11. 11.  Yoshikawa E, Marui A, Tsukashita M, et a1. Carvedilol may alleviate late cardiac remodelling following surgical ventricular restoration. Eur J Cardiothorac Surg, 2010, 37 (2):362-367.
  12. 12.  Hsu CP, Huang CY, Wang JS, et a1. Extracellular matrix remodeling attenuated after experimental postinfarct left ventricular aneurysm repair. Ann Thorac Surg, 2008, 86 (4):1243-1249.
  13. 13.  Matsubayashi K, Fedak PW, Mickle DA, et a1. Improved left ventricular aneurysm repair with bioengineered vascular smooth muscle grafts. Circulation, 2003, 108 (Suppl 1):II219-II225.
  14. 14.  Di Donato M, Castelvecchio S, Menicanti L. Surgical treatment of ischemic heart failure:the Dor procedure. Circ J, 2009, 73 (Suppl A):A1-A5.
  15. 15.  Sakamoto Y, Mizuno A, Buckberg GD, et a1. Restoring the remodeled enlarged left ventricle:experimental benefits of in vivo porcine cardioreduction in the beating open heart. J Card Surg, 1998, 13 (6):429-439.