引用本文: 郭凤凤, 于晓波, 孙中泱, 潘博, 蒋海越. 微型高频针状电极刺激辅助活体软骨重塑形的初步研究. 中国修复重建外科杂志, 2019, 33(5): 601-605. doi: 10.7507/1002-1892.201807032 复制
耳畸形是临床常见的先天性颅颌面畸形之一,其中软骨畸形是引起耳畸形最重要的因素。耳软骨是一种弹性软骨,主要由软骨细胞、软骨基质、弹性纤维等构成,这种组成决定了耳软骨不容易机械塑形。1993 年 Helidonis 等[1]首次报道了激光辅助软骨重塑形技术(laser-assisted cartilage reshaping,LACR),指出激光所产生的热效应对软骨有重塑形作用。之后,学者们尝试使用该技术对招风耳畸形、鼻中隔偏曲畸形等颅颌面畸形进行矫治[2-6]。2006 年 Trelles 等[2]首次将 LACR 用于人招风耳畸形的矫治,获得满意效果。但因招风耳畸形矫治所用的激光参数尚无统一标准,影响了该技术在临床的广泛应用。此外,学者们发现在激光、射频、直流电压或者接触热源的情况下,离体或活体软骨均会出现软骨变软并重塑形的情况[7-13],为耳畸形矫治带来新的思路。本研究拟采用微型高频针状电极刺激辅助兔耳软骨重塑形,通过观察组织学变化,分析微型高频针状电极热效应对软骨重塑形的作用,探讨其作为耳畸形矫治方法的可行性。
1 材料与方法
1.1 实验动物及主要仪器
5~6 月龄雄性新西兰白兔 5 只,体质量(2.0±0.5)kg,由北京协和医学院中国医学科学院整形外科医院实验动物中心提供。所有动物实验均经北京协和医学院中国医学科学院整形外科医院动物伦理委员会批准,实验动物使用许可证号:SYXK(京)2015-0009。
ERBE VIO 300S 电外科工作站、ERBE NESSYΩ 一次性分片式负极板(型号 20193-083)[德国爱尔博(上海)医疗器械有限公司];Colorado N103A 微型高频针状电极(微型钨针)[美国史赛克(中国)有限公司];发生器(与消融电极配合使用)(深圳市美成医疗用品有限公司);全景扫描仪(3D HISTECH 公司,匈牙利);Image-Pro Plus 6.0 软件(Media Cybernetics 公司,美国)。
1.2 实验方法
实验采用自身对照。5 只新西兰白兔随机取一侧耳作为实验组;于微型高频针状电极刺激前 1 d 兔耳局麻下脱毛,沿 5 号注射器针筒(直径 12 mm)塑形,针线固定。采用微型高频针状电极刺激耳塑形区,电极选用电凝模式(参数设置为 COAG:25,Effect:2),电极刺激层次经软骨膜穿透软骨层,微型高频针状电极刺激条带垂直于兔耳长轴(刺激点间距约 2 mm,刺激条带间距约 10 mm)。于针孔处涂抹红霉素软膏,预防伤口感染。另一侧仅采用针筒固定塑形,不接受微型高频针状电极刺激,作为对照组。见图 1。

左侧为实验组(箭头示微型针状电极刺激区域),右侧为对照组
Figure1. The rabbit ear modelLeft ear for experimental group (arrow indicated the microdissection needle insertion sites), right ear for control group
1.3 观测指标
1.3.1 大体观察
电极刺激后即刻及 4 周时观察实验组兔耳皮肤反应。4 周时拆除固定塑形装置,观察两组兔耳塑形区形态。
1.3.2 组织学观察
电极刺激后 8 周,切取两组兔耳软骨标本,制成 4 μm 厚切片,HE 染色。全景扫描仪扫描后,观察软骨细胞和基质变化。随机选取 3 处不同区域,高倍镜下采用 Image-Pro Plus 6.0 软件测量软骨细胞层厚度,取均值。
1.4 统计学方法
采用 SPSS19.0 统计软件进行分析。数据以均数±标准差表示,组间比较采用配对 t 检验;检验水准 α=0.05。
2 结果
2.1 大体观察
5 只新西兰白兔均存活至实验完成,术区皮肤未发生感染、溃烂和坏死等情况。实验组:与电极刺激后即刻比较,4 周时皮肤已完全愈合,刺激针孔已消失。拆除固定塑形装置后即刻两组均有明显塑形效果,8 h 后均部分恢复原形态;24 h 后对照组基本恢复原形态,而实验组保持一定塑形形态,且一直维持至 8 周取材时。见图 2。

从左至右分别为电极刺激后 4 周及 8 周 a. 对照组;b. 实验组
Figure2. Gross observation of rabbit ears in the two groupsFrom left to right for 4 and 8 weeks after stimulation a. Control group; b. Experimental group
2.2 组织学观察
HE 染色示,对照组软骨带平滑,细胞分布均匀,基质染色基本一致,表皮、真皮、软骨显示正常组织学表现。实验组可见软骨细胞明显增生、增大,细胞层数增厚;微型高频电极刺激针孔处尚可见局部软骨细胞损伤变性,结缔组织中有坏死细胞及炎性细胞浸润。见图 3。对照组软骨细胞层厚度为(385.714±2.027)μm,实验组为(1 594.732±1.872)μm,两组差异有统计学意义(t=–759.059,P=0.000)。

a. 对照组;b. 实验组 黑箭头示局部软骨细胞损伤变性,红箭头示结缔组织中坏死细胞,黄箭头示炎性细胞
Figure3. HE staining observation of the two groups at 8 weeks after stimulation (×100)a. Control group; b. Experimental group Black arrow indicated the degeneration and injury of cartilage cells, red arrow indicated the connective tissue with necrotic cells, and yellow arrow indicated the inflammatory cells
3 讨论
3.1 LACR 技术作用机制
1993 年 Helidonis 等[1]首次报道了 LACR 技术,随后学者们对该技术进行了不断尝试及研究,发现软骨的生物力学、细胞增殖和分化具有温度依赖性,在一定温度范围内会产生应力松弛,从而导致软骨形状的改变[14-16]。Helidonis 等[1]和 Hajiioannou 等[17]认为其作用机制是 65~75℃ 温度下通过增加软骨顺应性来实现重塑形;Mordon 等[14]和 Trelles 等[2]则认为在激光等热力作用下软骨细胞的分裂、增殖是长期维持重塑形软骨形状的主要因素。目前普遍认为 LACR 技术是通过热力引导的应力松弛来改变软骨形态,从而达到重塑形目的[1, 7, 15]。微观上主要有 3 种假说:① 热力作用下,糖蛋白中的硫酸软骨素链断裂和再聚合反应改变了蛋白多糖的结构,继而发生应力松弛;② 在热力作用下,糖蛋白分子发生非变性解聚和再聚合反应导致软骨基质空间结构改变,而细胞外基质未变性,从而发生应力松弛;③ 热力作用下,钙离子、钠离子非选择性结合软骨组织内胶原及糖蛋白中的负电荷基团,引起软骨局部矿化,发生应力松弛。但关于热力作用的确切分子机制尚无定论,仍需进一步深入研究。有关创伤修复作用在软骨重塑形方面有多大作用、软骨膜及软骨损伤修复对重塑形的影响,目前尚未见文献报道。
3.2 组织形态学变化
根据软骨的热力学机制特性,学者陆续研究出应用射频[8-9]、电流[10-13, 18-19]、激光[2-7, 14-15, 20-22]等对软骨进行重塑形。本研究亦是根据该原理,应用微型高频针状电极对兔耳软骨进行重塑形,目前尚无相关研究报道。Holden 等[20]的研究表明,单纯机械塑形后,兔耳 HE 染色未见异常,软骨细胞分布符合正常兔耳组织学表现,未见纤维增生及形态改变。本研究结果与 Holden 等的研究结果一致,在没有激光或者微型高频电极刺激等热力作用下,机械塑形短期内(如 24 h)虽然可以部分重塑形软骨,但不会长期维持塑形形态,也不会改变其组织形态学表现。而在激光或者直流电作用下兔耳软骨会出现软骨细胞增生、细胞层数增厚、基质染色加深[14, 19-23],本研究结果与之一致。Leclère 等[24]报道这种组织学变化同样可见于 LACR 矫正人招风耳畸形中的人耳软骨中,并且指出这种变化是由于激光或直流电刺激区域软骨温度升高,导致生长因子协调表达的结果,TGF-β1 是其中起主要作用的因子之一。Mordon 等[14]认为软骨细胞再生说明激光穿透深度和软骨温度升高可能达到重塑形要求的最优参数范围,同时这可能也是软骨可长久保持重塑形状态的原因,值得进一步深入探究。
同时我们研究发现,在微型高频电极刺激的针孔区域除可见软骨新生带形成外,局部软骨细胞损伤变性、结缔组织中有坏死细胞及炎性细胞浸润,说明电极刺激区域的局部耳组织产生了不可逆性损伤,同时也说明软骨重塑形的机制与创伤修复无明显关系。有关不可逆性损伤的具体原因尚不清楚,主要考虑有以下两方面原因:一方面,由于国内外尚未见微型高频针状电极刺激相关报道,缺乏实验相关参考依据,因此我们根据中国医学科学院整形外科医院蒋海越教授团队在临床人耳手术过程中使用微型高频针状电极的经验,采用电凝模式(参数设置为 COAG:25,Effect:2)对兔耳软骨进行刺激和重塑形,但兔耳和人耳组织存在一定差别。此外,由于本研究实验动物有限,仅以实验组及对照组进行比较,无法确定是否为能量过高导致局部不可逆性损伤,后续需对比分析不同参数的电凝模式结果,从而寻找微型高频针状电极辅助的 LACR 技术最优参数范围。另一方面,与 Mordon 等[14]、Holden 等[20]、Chlebicki 等[21]、Leclère 等[24]的研究不同,本实验过程中未采用快速冷却系统对刺激区域局部进行及时冷却处理,而是借助空气对流作用自动冷却,因此这种组织学变化可能是刺激后局部区域即时热力损伤所致,后续实验会考虑加入快速冷却系统,对比分析病理结果。
综上述,本研究结果显示微型高频针状电极刺激对兔耳软骨进行重塑形所产生的组织学变化,与既往采用激光、直流电等辅助技术所产生结果基本一致。但本研究样本量有限,观测指标单一,接下来需要扩大实验样本量进一步证实本研究是否具有可重复性,并分析导致软骨变形的分子机制;设置多个能量参数进行实验观察,明确最佳能量参数范围,为下一步临床试验奠定基础。
耳畸形是临床常见的先天性颅颌面畸形之一,其中软骨畸形是引起耳畸形最重要的因素。耳软骨是一种弹性软骨,主要由软骨细胞、软骨基质、弹性纤维等构成,这种组成决定了耳软骨不容易机械塑形。1993 年 Helidonis 等[1]首次报道了激光辅助软骨重塑形技术(laser-assisted cartilage reshaping,LACR),指出激光所产生的热效应对软骨有重塑形作用。之后,学者们尝试使用该技术对招风耳畸形、鼻中隔偏曲畸形等颅颌面畸形进行矫治[2-6]。2006 年 Trelles 等[2]首次将 LACR 用于人招风耳畸形的矫治,获得满意效果。但因招风耳畸形矫治所用的激光参数尚无统一标准,影响了该技术在临床的广泛应用。此外,学者们发现在激光、射频、直流电压或者接触热源的情况下,离体或活体软骨均会出现软骨变软并重塑形的情况[7-13],为耳畸形矫治带来新的思路。本研究拟采用微型高频针状电极刺激辅助兔耳软骨重塑形,通过观察组织学变化,分析微型高频针状电极热效应对软骨重塑形的作用,探讨其作为耳畸形矫治方法的可行性。
1 材料与方法
1.1 实验动物及主要仪器
5~6 月龄雄性新西兰白兔 5 只,体质量(2.0±0.5)kg,由北京协和医学院中国医学科学院整形外科医院实验动物中心提供。所有动物实验均经北京协和医学院中国医学科学院整形外科医院动物伦理委员会批准,实验动物使用许可证号:SYXK(京)2015-0009。
ERBE VIO 300S 电外科工作站、ERBE NESSYΩ 一次性分片式负极板(型号 20193-083)[德国爱尔博(上海)医疗器械有限公司];Colorado N103A 微型高频针状电极(微型钨针)[美国史赛克(中国)有限公司];发生器(与消融电极配合使用)(深圳市美成医疗用品有限公司);全景扫描仪(3D HISTECH 公司,匈牙利);Image-Pro Plus 6.0 软件(Media Cybernetics 公司,美国)。
1.2 实验方法
实验采用自身对照。5 只新西兰白兔随机取一侧耳作为实验组;于微型高频针状电极刺激前 1 d 兔耳局麻下脱毛,沿 5 号注射器针筒(直径 12 mm)塑形,针线固定。采用微型高频针状电极刺激耳塑形区,电极选用电凝模式(参数设置为 COAG:25,Effect:2),电极刺激层次经软骨膜穿透软骨层,微型高频针状电极刺激条带垂直于兔耳长轴(刺激点间距约 2 mm,刺激条带间距约 10 mm)。于针孔处涂抹红霉素软膏,预防伤口感染。另一侧仅采用针筒固定塑形,不接受微型高频针状电极刺激,作为对照组。见图 1。

左侧为实验组(箭头示微型针状电极刺激区域),右侧为对照组
Figure1. The rabbit ear modelLeft ear for experimental group (arrow indicated the microdissection needle insertion sites), right ear for control group
1.3 观测指标
1.3.1 大体观察
电极刺激后即刻及 4 周时观察实验组兔耳皮肤反应。4 周时拆除固定塑形装置,观察两组兔耳塑形区形态。
1.3.2 组织学观察
电极刺激后 8 周,切取两组兔耳软骨标本,制成 4 μm 厚切片,HE 染色。全景扫描仪扫描后,观察软骨细胞和基质变化。随机选取 3 处不同区域,高倍镜下采用 Image-Pro Plus 6.0 软件测量软骨细胞层厚度,取均值。
1.4 统计学方法
采用 SPSS19.0 统计软件进行分析。数据以均数±标准差表示,组间比较采用配对 t 检验;检验水准 α=0.05。
2 结果
2.1 大体观察
5 只新西兰白兔均存活至实验完成,术区皮肤未发生感染、溃烂和坏死等情况。实验组:与电极刺激后即刻比较,4 周时皮肤已完全愈合,刺激针孔已消失。拆除固定塑形装置后即刻两组均有明显塑形效果,8 h 后均部分恢复原形态;24 h 后对照组基本恢复原形态,而实验组保持一定塑形形态,且一直维持至 8 周取材时。见图 2。

从左至右分别为电极刺激后 4 周及 8 周 a. 对照组;b. 实验组
Figure2. Gross observation of rabbit ears in the two groupsFrom left to right for 4 and 8 weeks after stimulation a. Control group; b. Experimental group
2.2 组织学观察
HE 染色示,对照组软骨带平滑,细胞分布均匀,基质染色基本一致,表皮、真皮、软骨显示正常组织学表现。实验组可见软骨细胞明显增生、增大,细胞层数增厚;微型高频电极刺激针孔处尚可见局部软骨细胞损伤变性,结缔组织中有坏死细胞及炎性细胞浸润。见图 3。对照组软骨细胞层厚度为(385.714±2.027)μm,实验组为(1 594.732±1.872)μm,两组差异有统计学意义(t=–759.059,P=0.000)。

a. 对照组;b. 实验组 黑箭头示局部软骨细胞损伤变性,红箭头示结缔组织中坏死细胞,黄箭头示炎性细胞
Figure3. HE staining observation of the two groups at 8 weeks after stimulation (×100)a. Control group; b. Experimental group Black arrow indicated the degeneration and injury of cartilage cells, red arrow indicated the connective tissue with necrotic cells, and yellow arrow indicated the inflammatory cells
3 讨论
3.1 LACR 技术作用机制
1993 年 Helidonis 等[1]首次报道了 LACR 技术,随后学者们对该技术进行了不断尝试及研究,发现软骨的生物力学、细胞增殖和分化具有温度依赖性,在一定温度范围内会产生应力松弛,从而导致软骨形状的改变[14-16]。Helidonis 等[1]和 Hajiioannou 等[17]认为其作用机制是 65~75℃ 温度下通过增加软骨顺应性来实现重塑形;Mordon 等[14]和 Trelles 等[2]则认为在激光等热力作用下软骨细胞的分裂、增殖是长期维持重塑形软骨形状的主要因素。目前普遍认为 LACR 技术是通过热力引导的应力松弛来改变软骨形态,从而达到重塑形目的[1, 7, 15]。微观上主要有 3 种假说:① 热力作用下,糖蛋白中的硫酸软骨素链断裂和再聚合反应改变了蛋白多糖的结构,继而发生应力松弛;② 在热力作用下,糖蛋白分子发生非变性解聚和再聚合反应导致软骨基质空间结构改变,而细胞外基质未变性,从而发生应力松弛;③ 热力作用下,钙离子、钠离子非选择性结合软骨组织内胶原及糖蛋白中的负电荷基团,引起软骨局部矿化,发生应力松弛。但关于热力作用的确切分子机制尚无定论,仍需进一步深入研究。有关创伤修复作用在软骨重塑形方面有多大作用、软骨膜及软骨损伤修复对重塑形的影响,目前尚未见文献报道。
3.2 组织形态学变化
根据软骨的热力学机制特性,学者陆续研究出应用射频[8-9]、电流[10-13, 18-19]、激光[2-7, 14-15, 20-22]等对软骨进行重塑形。本研究亦是根据该原理,应用微型高频针状电极对兔耳软骨进行重塑形,目前尚无相关研究报道。Holden 等[20]的研究表明,单纯机械塑形后,兔耳 HE 染色未见异常,软骨细胞分布符合正常兔耳组织学表现,未见纤维增生及形态改变。本研究结果与 Holden 等的研究结果一致,在没有激光或者微型高频电极刺激等热力作用下,机械塑形短期内(如 24 h)虽然可以部分重塑形软骨,但不会长期维持塑形形态,也不会改变其组织形态学表现。而在激光或者直流电作用下兔耳软骨会出现软骨细胞增生、细胞层数增厚、基质染色加深[14, 19-23],本研究结果与之一致。Leclère 等[24]报道这种组织学变化同样可见于 LACR 矫正人招风耳畸形中的人耳软骨中,并且指出这种变化是由于激光或直流电刺激区域软骨温度升高,导致生长因子协调表达的结果,TGF-β1 是其中起主要作用的因子之一。Mordon 等[14]认为软骨细胞再生说明激光穿透深度和软骨温度升高可能达到重塑形要求的最优参数范围,同时这可能也是软骨可长久保持重塑形状态的原因,值得进一步深入探究。
同时我们研究发现,在微型高频电极刺激的针孔区域除可见软骨新生带形成外,局部软骨细胞损伤变性、结缔组织中有坏死细胞及炎性细胞浸润,说明电极刺激区域的局部耳组织产生了不可逆性损伤,同时也说明软骨重塑形的机制与创伤修复无明显关系。有关不可逆性损伤的具体原因尚不清楚,主要考虑有以下两方面原因:一方面,由于国内外尚未见微型高频针状电极刺激相关报道,缺乏实验相关参考依据,因此我们根据中国医学科学院整形外科医院蒋海越教授团队在临床人耳手术过程中使用微型高频针状电极的经验,采用电凝模式(参数设置为 COAG:25,Effect:2)对兔耳软骨进行刺激和重塑形,但兔耳和人耳组织存在一定差别。此外,由于本研究实验动物有限,仅以实验组及对照组进行比较,无法确定是否为能量过高导致局部不可逆性损伤,后续需对比分析不同参数的电凝模式结果,从而寻找微型高频针状电极辅助的 LACR 技术最优参数范围。另一方面,与 Mordon 等[14]、Holden 等[20]、Chlebicki 等[21]、Leclère 等[24]的研究不同,本实验过程中未采用快速冷却系统对刺激区域局部进行及时冷却处理,而是借助空气对流作用自动冷却,因此这种组织学变化可能是刺激后局部区域即时热力损伤所致,后续实验会考虑加入快速冷却系统,对比分析病理结果。
综上述,本研究结果显示微型高频针状电极刺激对兔耳软骨进行重塑形所产生的组织学变化,与既往采用激光、直流电等辅助技术所产生结果基本一致。但本研究样本量有限,观测指标单一,接下来需要扩大实验样本量进一步证实本研究是否具有可重复性,并分析导致软骨变形的分子机制;设置多个能量参数进行实验观察,明确最佳能量参数范围,为下一步临床试验奠定基础。